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EFFECT OF OXIDIZER PARTICLE SIZF: ON SOLID- 

PROPELLANT COMBUSTION STABILITY 

by Gerald Morrell and Murray L. Pinns 

Lewis Research Center 

SUMMARY 

Amplitudes of the longi tudinal  mode of o sc i l l a t ion  were measured i n  s ide-  
vented cy l indr ica l  combustors loaded with a composite s o l i d  propellant.  The 
binder consisted of a butadiene - carboxylic ac id  copolymor cross-linked with an 
epoxy res in ,  and the oxidizer w a s  ammonium perchlorate.  
s i ze  w a s  varied by changing the proportions of unground and ground perchlorate 
while keeping the t o t a l  quant i ty  constant a t  81 percent by weight. 

Mean oxidizer pa r t i c l e  

The experimental r e su l t s  indicate  a sharp r i s e  in  osc i l l a t ion  amplitude 
40 t o  45 percent ground per- 

A s imi l a r i t y  parameter calculated on t h e  bas i s  that 

a t  a well-defined mean oxidizer p a r t i c l e  s ize:  
chlorate  i n  a 6-inch-long combustor; 20 t o  25 percent ground perchlorate i n  a 
12-inch-long combustor. 
burning ve loc i ty  is  determined by t h e  rate of turbulent  mixing is  shown t o  be 
i n  reasonable agreement with t h e  observed behavior. 

A few experiments conducted with aluminized propellant indicate,  t h a t  t h e  
suppression e f fec t  associated with t h e  aluminum addition is probably due t o  
energy absorption a t  or near t h e  surface. 

INTRODUCTION 

In  recent years a number of theor ies  have been advanced t o  describe t h e  
conditions under which a gaseous- or l iquid-propellant rocket combustor w i l l  
operate i n  a resonance mode ( re fs .  1 t o  4) .  Very generally, these  theor ies  a l l  
indicate  that a decrease i n  the  charac te r i s t ic  time of t h e  combustion process 
with respect t o  t h e  wave t i m e  tends t o  des t ab i l i ze  t h e  system; t h a t  is, an in-  
crease i n  t h e  l o c a l  burning rate has a des tab i l iz ing  influence, other fac tors  
being constant. If these theor ies  a r e  applicable t o  solid-propellant systems, 
decreasing t h e  oxidizer p a r t i c l e  s i z e  should have a destabi l iz ing e f fec t .  The 
experiments reported i n  reference 5 show i n  a qua l i t a t ive  manner t h a t  such an 
e f f e c t  does ex i s t .  
measured combustion i n s t a b i l i t y  (using acoustic admittance as a parameter) as a 
function of o sc i l l a t ion  frequency f o r  three d i f f e ren t  oxidizer s i z e  d is t r ibu-  
t i ons .  Their r e s u l t s  qua l i t a t ive ly  confirm the  observations of reference 5. 

In addition, Horton and coworkers (refs. 6 and 7 )  have 



An a l t e rna t ive  approach developed by McClure and coworkers for so l id-  
propellant combustion ( r e f s .  8 and 9 )  is based on acoust ic  theory and t r e a t s  
t h e  combustion zone as a boundary condition. In  t h i s  case, t h e  s t a b i l i t y  of 
t h e  system is  determined by t h e  s ign and t h e  magnitude of t h e  acoustic admit- 
tance at t h e  boundary. 
t h e  acoustic admittance has been calculated by an extension of McClure's 
theory. It i s  found t h a t  a decrease i n  oxidizer p a r t i c l e  s i z e  should have a 
st ab i l i z  ing e f f ec t  . 

In  reference 10 the e f f e c t  of oxidizer p a r t i c l e  s i z e  on 

The experiment described herein was undertaken t o  t e s t  these two opposed 
predict ions.  Hollow cy l ind r i ca l  grains  of composite propellant were burned i n  
side-vented combustors of t h e  design used by Price ( r e f .  11). Oxidizer p a r t i c l e  
s i z e  was varied by changing t h e  proportion of ground and unground perchlorate.  
A f e w  t e s t s  were a l s o  conducted with aluminized propellant t o  determine if t h e  
presence of aluminum would lead t o  g rea t ly  d i f fe ren t  behavior. 

A n  analysis  is presented that is based on t h e  assumption that t h e  r a t e  of 
combustion of t h e  composite propellant can be represented by the  r a t e  of turbu- 
l e n t  mixing from a g r id  of point sources. 

SYMBOLS 

constants i n  burning-rate equation 

ve loc i ty  of sound 

oxidizer average p a r t i c l e  diameter 

oxidizer average p a r t i c l e  diameter of ground f r ac t ion  

oxidizer average p a r t i c l e  diameter of unground f r ac t ion  

conversion constant 

combustor length 

molecular weight of combust ion gas 

mean combustion pressure 

gas constant 

l i n e a r  regression r a t e  of propellant 

source spacing 

temperature 

turbulence in t ens i ty  

mixing time 



t W period of o sc i l l a t ion  

X mixing length 

a mixing parameter, $5 

Y specif  ic-heat rat i o  

P gas densi ty  

S 

propellant dens it y 

volume f r ac t ion  of oxidizer i n  propellant 

weight r a t i o  of ground t o  unground oxidizer 

PS 

TJ 

4J 

Subscript s : 

6 6-in. combustor 

1 2  12-in. combustor 

EXPERIMENTAL PROCEDURE 

The combustor configuration, shown i n  f igure  1, is very similar t o  that 
described i n  reference 11. Cylinder lengths of 6 and 12  inches were used with 

Burst disk- 
.____ 

-Plastic washer 

6 or  '12 in.-+ CD-7792 
I 

Figure 1. - Cross-sectional view of side-vented combustor. 

a propellant charge having an inside diameter of 0.5 inch and an outside diam- 
eter of 1.0 inch, which was contained i n  a paper-base phenolic tube having a 
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1-inch inside diameter, a 1.0965f0.0005-inch outs ide diameter, and a 5.875-inch 
length. The 12-inch combustor was loaded with two such charges. 

The strain-gage pressure transducer had a f la t  response t o  10 kilocycles. 
Its output was recorded on magnetic tape at a speed of 60 inches per second. 
The pressure data  were analyzed by playing t h e  tape  back at 15 inches per 
second and recording on a galvanometer. 
ing t h e  tape  back through a 40-cycle response element, and t h e  osc i l l a t ion  
frequency and t h e  amplitude were derived by playing t h e  tape  back through a 
2000-cycle response element. 

The mean pressure was derived by play- 

The propellant binder w a s  a butadiene - carboxylic acid copolymer cross- 
linked with an epoxy res in .  The ammonium perchlorate, which contained no 
anticaking agent, w a s  stored, ground, and weighed a t  approximately 20-percent 
r e l a t ive  humidity. Pa r t i c l e  s i ze  d is t r ibu t ions  are  shown i n  f igure 2 f o r  the  
ground and t h e  unground perchlorate and for t h e  aluminum powder used i n  t h e  
several formulations. Average p a r t i c l e  diameters were 9.1, 67.7, and 6.7 
microns f o r  t h e  ground perchlorate, t h e  unground perchlorate, and t h e  aluminum 
powder, respectively.  

100 

ao[- - -- Ground Aluminum ammonium powder [- 
perchlorate / 

c --- Unground ammonium 
5 perchlorate / 

/ 
/ / 

2 4 6 8  
I 

200 
Diameter, p 

Figure 2. - Particle size distributions of ammonium perchlorate and aluminum used i n  
propellants. 

The composition of t h e  nonaluminized propellant was 18.8 percent binder, 
0.2 percent magnesium oxide, and 81 percent ammonium perchlorate. The alum- 
inized propellant consisted of 18.4 percent binder, 0.2 percent magnesium 
oxide, 79.4 percent ammonium perchlorate, and 2.0 percent aluminum. The pro- 
portions of ground and unground perchlorate were varied t o  obtain a range of 
average oxidizer p a r t i c l e  s izes .  I n  a l l  formulations t h e  weight r a t i o  of 
perchlorate t o  binder was held constant at 4.3. 

The propellant ingredients were combined i n  a sigma-bladed m i x e r ,  t r ans-  
fe r red  t o  a deaerator, and then forced, while warm, f r o m  t h e  deaerator i n to  t h e  
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phenolic tubes under vacuum. Each tube was held v e r t i c a l l y  i n  a support that 
sealed t h e  bottom end and guided a 0.500-inch-diameter core rod down t h e  ax i s  
of t h e  f i l l e d  tube. 
16 hours a t  85OCZO C i n  a forced-draft oven. A f t e r  t h e  core rods were pulled 
out, excess propellant was trimmed off, and t h e  absence of s ignif icant  defects  
i n  t h e  grain was ascertained from X-ray photographs. 

Six assemblies were prepared at a t i m e  and cured f o r  

- 
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- 

I I I I 1 I J 
(a) Nonaluminized propellants. 

I I 1 2  
80 100 120 140 160 

I I 
40 60 

-1Mw) I I 
0 20 

Combustion pressure, Pa3, (Iblsq in. absIa3 

(b) Propellants containing 2 percent aluminum. 

Figure 3. - Burning rates of propellants (plotted according to ref. 11). 
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The outside diameter of each gra in  was measured t o  t h e  nearest  0.001 inch 
so t h a t  t h e  la rger  ones could l a t e r  be inser ted in to  t h e  l a rge r  motors t o  give 
a consis tent ly  t i g h t  f i t .  
at -109' F f o r  at least 16 hours before being loaded in to  t h e  motor case. 

Each gra in  was wrapped i n  a p l a s t i c  bag and s tored 

The ch i l l ed  grains  were coated on t h e  outer surface w i t h  s i l i cone  grease 
before being rammed i n t o  t h e  s imi la r ly  lubricated combustor cases. 
ing t o  room temperature, a 1/2-inch-diameter opening was cut r a d i a l l y  through 
t h e  s ide  of t h e  gra in  at  t h e  nozzle location. P l a s t i c  washers were attached 
a t  each end of t h e  gra in  t o  prevent both spal l ing and burning of t h e  end sur- 
faces.  Approximately 1 .5  mi l l i l i t e r s  of ign i t ion  powder consisting of equal 
pa r t s  of polytetrafluoroethylene and magnesium powder were d is t r ibu ted  along 
t h e  length of t h e  charge. 
embedded i n  t h e  ign i t e r  powder, and t h e  leads were brought out through t h e  
nozzle. A 10-volt alternating-current input was suf f ic ien t  t o  ensure repro- 
ducible igni t ions.  

After warm- 

A 6-inch length of nichrome w i r e  (4.1 ohms/ft) was 

Linear regression rates (s t rand burning rates) f o r  each composition were 
The rate data  

The f a i r ed  l i n e s  
measured i n  a Crawford-tne bomb p r i o r  t o  t h e  combustor t e s t s .  
w e r e  correlated by t h e  method of Summerfield ( ref .  1 2 ) .  
based on a least squares f i t  a r e  shown i n  f igure  3. Fromthe regression rates ,  
t h e  nozzle s izes  were selected t o  obtain about t h e  same average mean pressure 
(1500 lb/sq in. abs) for each composition over t h e  range where i n s t a b i l i t y  
occurred. Actual values ranged from about 1300 to 1800 pounds per square inch 
absolute. 

t I 

i 
/ 1 

Pressure 

750 lblsq in. 

Figure 4. - Typical pressure !race showing commencement of oscillatory combustion. 
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RESULTS 

All t h e  runs exhibited similar charac te r i s t ics .  After ignit ion,  t h e  com- 
bustion pressure increased almost l i nea r ly  with time, as expected from t h e  
charge geometry. 
1000 pounds per square inch, i n s t a b i l i t y  s t a r t e d  spontaneously and t h e  ampli- 
tude increased rapidly.  Simultaneously, t h e  mean pressure increased t o  a 
higher level .  Following t h i s  t ransient ,  t h e  osc i l l a t ion  amplitude reached a 
steady value and t h e  mean pressure resumed i ts  regular increase u n t i l  combus- 
t i o n  was terminated by bursting of t h e  safe ty  disk. A t y p i c a l  pressure t r a c e  
i s  shown i n  f igure  4. I n  t h i s  reproduction, t h e  oscil lograph paper speed was 
reduced i n  order t o  keep t h e  f igure  s i z e  manageable. The individual cycles 
a r e  not evident. 

When t h e  mean pressure reached a value i n  t h e  range 600 t o  

The data  a r e  shown i n  f igures  5 and 6, where average peak-to-peak pressure 
amplitude, normalized by t h e  mean pressure over t h e  range where osc i l l a t ions  
occurred, i s  p lo t ted  as a function of weight percent of ground mater ia l  i n  t h e  

a 
a . 
a 
al n 3 
c 
P 
- 
5 
al 
L 
3 
VI VI 

b 
h 

0 

40 50 60 70 
I 

30 
- 

30 40 50 
Ground material in oxidizer, percent 

(a) 6-Inch combustor. (b) 12-Inch combustor. 

Figure 5. - Pressure oscillation amplitude in  combustor as function of ground material i n  oxidizer. 

oxidizer.  
from s i x  f i r i ngs .  The observed osc i l l a t ion  frequencies were 3600*200 cps i n  
t h e  6-inch-long combustor and 1800+100 cps i n  t h e  12-inch-long combustor. 
These frequencies correspond t o  t h e  first longi tudinal  mode of o sc i l l a t ion .  

Each data  point represents an average value of amplitude derived 

I n  both the  6- and 12-inch combustors, the  osc i l l a t ion  amplitude was  
nearly twofold greater  a t  the  highest  percent ground oxidizer than a t  the  low- 
est  percent ( f i g s .  5 ( a )  and ( b ) ) .  This agrees qua l i t a t ive ly  with the  r e s u l t s  
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When t h e  data  f o r  t h e  nonaluminized propellant a r e  considered, t h e  f a c t  
t h a t  t h e  change i n  amplitude occurs at a smaller percentage of ground oxidizer  
f o r  an increased wave time suggests t h a t  t h e  onset of i n s t a b i l i t y  may be asso- 
c i a t ed  with t h e  attainment of a given r a t i o  of combustion time t o  wave time, 
i n  agreement with t h e  theo r i e s  of references 1 t o  4. If t h i s  i s  ac tua l ly  t h e  
case, it i s  an important f inding f o r  it implies t h a t  these  theor ies  have suf-  
f i c i en t  genera l i ty  t o  be applied t o  both l iqu id-  and solid-propellant systems 
when proper account i s  taken of t h e  differences i n  boundary conditions. 

INTRODUCTION. percent 

Following t h i s  lead, it is  possible t o  explain t h e  observed behavior by 
adopting a s implif ied model of turbulent  mixing from a g r id  of point sources 
( r e f .  13) t h a t  has been checked experimentally f o r  hydrogen-oxygen combustion 
( ref .  1 4 ) .  Here it i s  assumed t h a t  t h e  oxidizer  p a r t i c l e s  can be considered 
t o  have a uniform s i z e  and spacing based on t h e  mean diameter and t h e  volumet- 
r i c  loading. The mixing parameter of reference 13 is a. =ye), which i s  con- 
s t a n t  f o r  any given degree of mixing. 

For t h e  mixing length, t h e  following expression is obtained on t h e  bas i s  
of m a s s  flow continuity: 

For t h e  spacing, t h e  following expression ( re f .  15) i s  used: 
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s = d[(G) 1/3 - 11 
When equations (1) and ( 2 )  are used, t h e  mixing parameter becomes: 

- ’ 3  a =  
MPd [(-)”” - l] 

where t h e  gas density has been evaluated by t h e  idea l  gas l a w .  

For t h e  longi tudinal  mode of osci l la t ion,  t h e  wave time i s  given by 

t, = 2L - 
C 

2L iy 

(3)  

(4) 

A combination of equations (3)  and (4) yields  t h e  r a t i o  of mixing time t o  wave 
time: 

If it is  assumed t,,at the r a t e  of combustion i s  l imited by ---e rat.e of turbu- 
len t  mixing, equation (5) becomes t h e  correct s imi l a r i t y  parameter f o r  describ- 
ing t h e  onset of i n s t ab i l i t y .  

Applying the  burning-rate expression proposed i n  reference 1 2  y ie lds  

where a and b a r e  functions of d. The value of d may be obtained by 
computing t h e  volume-to-surface r a t i o  of t h e  oxidizer. 
t h e  mixture consis ts  of two fractions,  each composed of spherical  pa r t i c l e s  
having t h e  average diameter of that  fraction, t h e  expression f o r  average 
oxidizer p a r t i c l e  s i z e  is  

If it is  assumed that 

In  f igure  7, d 
oxidizer. 

is  p lo t ted  as a function of t h e  percent ground material i n  t h e  
For t h e  nonaluminized propellants used i n  t h i s  study ( f ig .  3(a)), 

a = 1264 - 144.8X104 d 

b = 4. 13XL04 d - 8.135 
9 



where the  numerical constants a r e  based on values of P i n  pounds per square 
inch absolute, r i n  inches per second, and d i n  inches. Substi tution of 
these values i n  equation ( 6 )  yields  the f i n a l  expression for the  s t a b i l i t y  
parameter : 

- - -  t - a  
t w  2 

- 144.8XL04 d )  + (4.13XL04 d - 8.135)P 2/31 

( 7 )  

If it i s  assumed t h a t  turbulence in t ens i ty  i s  independent of t h e  p a r t i c l e  
s i z e  of t h e  oxidizer, it i s  possible t o  compute t h e  r a t i o  of t h e  s imi l a r i t y  
parameters f o r  t h e  experimental conditions under which t h e  sudden change i n  
amplitude occurs. For t h e  12-inch combustor, t h e  change occurred in  t h e  range 
20 t o  30 percent ground mater ia l  (d = 10.2X10'4 i n . ) ,  and t h e  average pressure 
a t  which i n s t a b i l i t y  occurred w a s  1800 pounds per square inch absolute. 
t h e  6-inch Combustor, t h e  change occurred i n  t h e  range 40 t o  45 percent ground 
mater ia l  (d = 7. 
square inch absolute. It i s  assumed, of course, that cp, ps, and t h e  gas prop- 
e r t i e s  a r e  invariant.  
given by equation ( 7 )  i s  

For 

in.  ), and t h e  average pressure was 1300 pounds per 

With these  values, t h e  r a t i o  of s imi l a r i t y  parameters 

3 0 ~ 1 0 ' ~  

The ra t io ,  of course, should be uni ty  
f o r  complete s imi la r i ty .  The devia- 

- t i o n  may be due t o  t h e  simplifications 
t h a t  have been made i n  t h e  analysis  
and evaluat ion. 

The observed ef fec t  of oxidizer 
p a r t i c l e  s i z e  on combustion s t a b i l i t y  
i s  t h e  reverse of t ha t  predicted i n  
reference 10, where the theory of 
references 8 and 9 w a s  extended t o i n -  
elude t h e  e f fec t  of oxidizer p a r t i c l e  
s i z e  on t h e  r e a l  par t  of t h e  acoustic 
admittance of t h e  burning surface. 
This circumstance leads t o  t h e  be l ie f  
t h a t  a meaningful theory of combus- 
t ion i n s t a b i l i t y  must include an ex- 
pression f o r  t h e  charac te r i s t ic  time 

t r ea t ing  the  la t te r  as a boundary con- 
d i t ion .  

0 20 40 60 80 100 of t h e  combust ion process ra ther  than 

Figure 7. - Average oxidizer particle diameter computed from 

Ground material i n  oxidizer, percent 

ratio of volume to surface area. 

Although t h e  data f o r  aluminized 
p-opellant ( f ig .  6 )  a r e  not extensive, they  do indicate  tha t  aluminum produces 
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an ef fec t  t h a t  i s  equivalent t o  an increase in  mixing time. The net e f fec t  i s  
equivalent t o  t h e  damping observed by Horton ( ref .  16 ) .  
bodies, such as aluminum or aluminum oxide, i n  t h e  combustion gases above t h e  
surface should produce damping, t h e  increased mixing rate due t o  vortex forma- 
t i o n  should counteract t h i s  effect .  It is  more l ikely,  therefore,  that thermal 
energy absorbed by t h e  addi t ive a t  or near t h e  surface i s  responsible f o r  t h e  
observed behavior, i n  agreement with t h e  data  of reference 1 7  on t h e  extinction 
of solid-propellant burning. 

While t h e  drag of bluff 

The melting and agglomeration of aluminum on t h e  surface ( r e f s .  15 and 18) 
should make it a more effect ive damping agent than aluminum oxide. This i s  in  
agreement with reference 16. If t h i s  view is correct, it might be prof i table  
t o  invest igate  t h e  e f fec ts  of thermal capacity, heat of fusion, and l i qu id  
range of additives on t h e i r  damping eff ic iencies .  

SUMMARY OF RESULTS 

The ef fec t  of oxidizer pa r t i c l e  s i z e  on resonance amplitude was studied by 
burning cy l indr ica l  grains of polybutadiene - carboxylic acid - ammonium per- 
chlorate  propellant i n  a side-vented combustor. 
oxidizer was increased, a sudden increase i n  amplitude occurred. The propor- 
t i o n  of ground oxidizer corresponding t o  t h i s  change varied inversely with t h e  
length of t h e  grain. 

A s  t h e  proportion of ground 

When a simplified model of turbulent mixing was employed, it was shown 
t h a t  t h e  change in  amplitude l e v e l  corresponds t o  a f ixed value of t h e  r a t i o  of 
mixing time t o  wave time as predicted by several  theor ies  of liquid-propellant 
combust ion in s t ab i l i t y .  The addition of aluminum produces an e f fec t  equivalent 
t o  an increase i n  mixing time. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, March 27, 1964 
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